Influence of Signal Intensity Non-Uniformity on Brain Volumetry Using an Atlas-Based Method

نویسندگان

  • Masami Goto
  • Osamu Abe
  • Tosiaki Miyati
  • Hiroyuki Kabasawa
  • Hidemasa Takao
  • Naoto Hayashi
  • Tomomi Kurosu
  • Takeshi Iwatsubo
  • Fumio Yamashita
  • Hiroshi Matsuda
  • Harushi Mori
  • Akira Kunimatsu
  • Shigeki Aoki
  • Kenji Ino
  • Keiichi Yano
  • Kuni Ohtomo
چکیده

OBJECTIVE Many studies have reported pre-processing effects for brain volumetry; however, no study has investigated whether non-parametric non-uniform intensity normalization (N3) correction processing results in reduced system dependency when using an atlas-based method. To address this shortcoming, the present study assessed whether N3 correction processing provides reduced system dependency in atlas-based volumetry. MATERIALS AND METHODS Contiguous sagittal T1-weighted images of the brain were obtained from 21 healthy participants, by using five magnetic resonance protocols. After image preprocessing using the Statistical Parametric Mapping 5 software, we measured the structural volume of the segmented images with the WFU-PickAtlas software. We applied six different bias-correction levels (Regularization 10, Regularization 0.0001, Regularization 0, Regularization 10 with N3, Regularization 0.0001 with N3, and Regularization 0 with N3) to each set of images. The structural volume change ratio (%) was defined as the change ratio (%) = (100 × [measured volume - mean volume of five magnetic resonance protocols] / mean volume of five magnetic resonance protocols) for each bias-correction level. RESULTS A low change ratio was synonymous with lower system dependency. The results showed that the images with the N3 correction had a lower change ratio compared with those without the N3 correction. CONCLUSION The present study is the first atlas-based volumetry study to show that the precision of atlas-based volumetry improves when using N3-corrected images. Therefore, correction for signal intensity non-uniformity is strongly advised for multi-scanner or multi-site imaging trials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اندازه گیری غیریکنواختی امواج رادیوئی در ام آر آی

Introduction: Non-uniformity is one of the most important parameters affecting MRI images which can lead to harmful effects in the diagnosis and analysis of qualitative and quantitative methods. The present study introduced a method for measuring RF non-homogeneity in MRI systems. Methods and Materials: To verify the uniformity of B0 and B1 fields, a cylindrical phantom with a diameter of 24 c...

متن کامل

Assessment of the Characteristics of MRI Coils in Terms of RF Non-Homogeneity Using Routine Spin Echo Sequences

Introduction: One of the major causes of image non-uniformity in MRI is due to the existence of  non-homogeneity in RF receive and transmit. This can be the most effective source of error in  quantitative  studies  in  MRI  imaging.  Part  of  this  non-homogeneity  demonstrates  the  characteristics of RF coil and part of it is due to the interaction of RF field with the material being  imaged...

متن کامل

Effect of Echo Time on the Maximum Relationship between Contrast Agent Concentration and Signal Intensity Using FLAIR Sequence

Introduction Contrast-enhanced fluid-attenuated inversion recovery (FLAIR) is one of the MRI sequences that can be used for detection and evaluation of pathological changes in the brain. In this work, we have studied the effect of different echo times (TE) on the maximum relationship between signal intensity and concentration of the contrast agent using the FLAIR sequence. Materials and Methods...

متن کامل

Generating the synthetic CT (sCT) and synthetic MR (sMR: sT1w/sT2w) images of the brain using atlas based method

Introduction: Radiation therapy planning (RTP) is one of the clinical applications in which both CT scan and MRI are used. MR and CT images are applied to determine the target volume and calculation of dose distribution, respectively. In addition, using two imaging modalities increases the department workload and cost. In this study, an algorithm was presented to create synthet...

متن کامل

Non-uniformity of Clinical Head, Head and Neck, and Body Coils in Magnetic Resonance Imaging (MRI)

Introduction Signal intensity uniformity in a magnetic resonance (MR) image indicates how well the MR imaging (MRI) system represents an object. One of the major sources of image non-uniformity in high-field MRI scanners is inhomogeneity of radio-frequency coil. The aim of this study was to investigate non-uniformity in head, head and neck, and body coils and compare the obtained results to det...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012